skip to main content


Search for: All records

Creators/Authors contains: "Abdulhafez, Moataz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While reactor wall preconditioning was previously shown to influence the growth of carbon nanotubes (CNTs) by chemical vapor deposition (CVD), it was previously only limited to studying the accumulating carbon deposits over the history of a large number of growth runs. However, the effect of leaving the reactor walls for an extended period of time between growth runs was not previously systematically studied. Here, we combine experimental measurements with a mathematical model to investigate the effect of thermochemical history of reactor walls on growth yield of vertically aligned CNT forests. Importantly, we demonstrate unexpectedly high CNT yield, exceeding one-order-of-magnitude taller forests, by increasing the interim period between runs (IPBR). We explain the results based on previously unexplored process sensitivity to trace amounts of oxygen-containing species in the reactor. In particular, uncontrolled amounts of water vapor desorbing from reactor walls during growth are modelled in this work. Our modeling results show the effect of IPBR on the outgassing dynamics revealing the underlying mechanism of generating growth promoting molecules during growth. By installing a new humidity sensor in our multizone rapid thermal CVD reactor, we are able to uniquely correlate the amount of moisture within the reactor to real-time measurements of growth kinetics, as well as ex situ characterization of CNT alignment and atomic defects. Our findings enable a scientifically grounded approach toward both boosting growth yield and improving its consistency by reducing run-to-run variations. Accordingly, engineered growth recipes can be envisioned to leverage this effect for improving manufacturing process scalability and robustness. 
    more » « less
  2. null (Ed.)
    Abstract Origami-based fabrication strategies open the door for developing new manufacturing processes capable of producing complex three-dimensional (3D) geometries from two-dimensional (2D) sheets. Nevertheless, for these methods to translate into scalable manufacturing processes, rapid techniques for creating controlled folds are needed. In this work, we propose a new approach for controlled self-folding of shape memory polymer sheets based on direct laser rastering. We demonstrate that rapidly moving a CO2 laser over pre-strained polystyrene sheets results in creating controlled folds along the laser path. Laser interaction with the polymer induces localized heating above the glass transition temperature with a temperature gradient across the thickness of the thin sheets. This gradient of temperature results in a gradient of shrinkage owing to the viscoelastic relaxation of the polymer, favoring folding toward the hotter side (toward the laser source). We study the influence of laser power, rastering speed, fluence, and the number of passes on the fold angle. Moreover, we investigate process parameters that produce the highest quality folds with minimal undesired deformations. Our results show that we can create clean folds up to and exceeding 90 deg, which highlights the potential of our approach for creating lightweight 3D geometries with smooth surface finishes that are challenging to create using 3D printing methods. Hence, laser-induced self-folding of polymers is an inherently mass-customizable approach to manufacturing, especially when combined with cutting for integration of origami and kirigami. 
    more » « less
  3. null (Ed.)
    Abstract The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensional (3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering. 
    more » « less
  4. Abstract The synthesis of vertically aligned carbon nanotubes (CNTs), also referred to as CNT forest, by chemical vapor deposition (CVD) is an intricate process that is sensitive to multiple factors other than control of temperature, pressure, and gas flows. In particular, growth is highly sensitive to factors like ambient humidity, as well as small quantities of oxygen-containing species and carbon deposits inside the reactor. These typically uncontrolled factors significantly affect growth reproducibility and hinders the fundamental study of process–structure–property relationship for these emerging materials. Accordingly, universally applicable design modifications and process steps toward improving growth consistency are sought after. In this study, we introduce two new modifications to our custom-designed multizone rapid thermal CVD reactor and demonstrate their impact on growth: (1) reconfiguring the inlet gas plumbing to add a gas purifier to the helium (He) line, and (2) designing a new support wafer for consistent loading of substrates. We use statistical analysis to test the effectiveness of these modifications in improving growth and reducing variability of both CNT forest height and density. Analysis of our experimental results and hypothesis testing show that combining the implementation of He purifier with the redesigned support wafer increases forest height and reduces the variability in height (17-folds), both at statistically significant and practically significant levels. 
    more » « less
  5. The growth of laser-induced nanocarbons, referred to here are LINC for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e. from below 20° to above 110°. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process-structure-property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges for isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.

     
    more » « less
  6. Abstract The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces. 
    more » « less